The jasmonate-responsive GTR1 transporter is required for gibberellin-mediated stamen development in Arabidopsis

نویسندگان

  • Hikaru Saito
  • Takaya Oikawa
  • Shin Hamamoto
  • Yasuhiro Ishimaru
  • Miyu Kanamori-Sato
  • Yuko Sasaki-Sekimoto
  • Tomoya Utsumi
  • Jing Chen
  • Yuri Kanno
  • Shinji Masuda
  • Yuji Kamiya
  • Mitsunori Seo
  • Nobuyuki Uozumi
  • Minoru Ueda
  • Hiroyuki Ohta
چکیده

Plant hormones are transported across cell membranes during various physiological events. Recent identification of abscisic acid and strigolactone transporters suggests that transport of various plant hormones across membranes does not occur by simple diffusion but requires transporter proteins that are strictly regulated during development. Here, we report that a major glucosinolate transporter, GTR1/NPF2.10, is multifunctional and may be involved in hormone transport in Arabidopsis thaliana. When heterologously expressed in oocytes, GTR1 transports jasmonoyl-isoleucine and gibberellin in addition to glucosinolates. gtr1 mutants are severely impaired in filament elongation and anther dehiscence resulting in reduced fertility, but these phenotypes can be rescued by gibberellin treatment. These results suggest that GTR1 may be a multifunctional transporter for the structurally distinct compounds glucosinolates, jasmonoyl-isoleucine and gibberellin, and may positively regulate stamen development by mediating gibberellin supply.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Gibberellin and jasmonate crosstalk during stamen development.

Gibberellin (GA) and jasmonate (JA) are two types of phytohormones that play important roles during stamen development. For example, Arabidopsis plants deficient in either of GA or JA develop short stamens. An apparent question to ask is whether GA action and JA action during stamen filament development are independent of each other or are in a hierarchy. Recent studies showed that GA modulates...

متن کامل

Gibberellin Acts through Jasmonate to Control the Expression of MYB21, MYB24, and MYB57 to Promote Stamen Filament Growth in Arabidopsis

Precise coordination between stamen and pistil development is essential to make a fertile flower. Mutations impairing stamen filament elongation, pollen maturation, or anther dehiscence will cause male sterility. Deficiency in plant hormone gibberellin (GA) causes male sterility due to accumulation of DELLA proteins, and GA triggers DELLA degradation to promote stamen development. Deficiency in...

متن کامل

Regulation of Jasmonate-Mediated Stamen Development and Seed Production by a bHLH-MYB Complex in Arabidopsis.

Stamens are the plant male reproductive organs essential for plant fertility. Proper development of stamens is modulated by environmental cues and endogenous hormone signals. Deficiencies in biosynthesis or perception of the phytohormone jasmonate (JA) attenuate stamen development, disrupt male fertility, and abolish seed production in Arabidopsis thaliana. This study revealed that JA-mediated ...

متن کامل

Gibberellin regulates Arabidopsis floral development via suppression of DELLA protein function.

The phytohormone gibberellin (GA) regulates the development and fertility of Arabidopsis flowers. The mature flowers of GA-deficient mutant plants typically exhibit reduced elongation growth of petals and stamens. In addition, GA-deficiency blocks anther development, resulting in male sterility. Previous analyses have shown that GA promotes the elongation of plant organs by opposing the functio...

متن کامل

The Jasmonate-ZIM domain proteins interact with the R2R3-MYB transcription factors MYB21 and MYB24 to affect Jasmonate-regulated stamen development in Arabidopsis.

The Arabidopsis thaliana F-box protein CORONATINE INSENSITIVE1 (COI1) perceives jasmonate (JA) signals and subsequently targets the Jasmonate-ZIM domain proteins (JAZs) for degradation by the SCF(COI1)-26S proteasome pathway to mediate various jasmonate-regulated processes, including fertility, root growth, anthocyanin accumulation, senescence, and defense. In this study, we screened JAZ-intera...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2015